Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
NPJ Precis Oncol ; 8(1): 34, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355834

ABSTRACT

Reversion mutations that restore wild-type function of the BRCA gene have been described as a key mechanism of resistance to Poly(ADP-ribose) polymerase (PARP) inhibitor therapy in BRCA-associated cancers. Here, we report a case of a patient with metastatic castration-resistant prostate cancer (mCRPC) with a germline BRCA2 mutation who developed acquired resistance to PARP inhibition. Extensive genomic interrogation of cell-free DNA (cfDNA) and tissue at baseline, post-progression, and postmortem revealed ten unique BRCA2 reversion mutations across ten sites. While several of the reversion mutations were private to a specific site, nine out of ten tumors contained at least one mutation, suggesting a powerful clonal selection for reversion mutations in the presence of therapeutic pressure by PARP inhibition. Variable cfDNA shed was seen across tumor sites, emphasizing a potential shortcoming of cfDNA monitoring for PARPi resistance. This report provides a genomic portrait of the temporal and spatial heterogeneity of prostate cancer under the selective pressure of a PARP inhibition and exposes limitations in the current strategies for detection of reversion mutations.

2.
Nat Commun ; 12(1): 3770, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34145282

ABSTRACT

Circulating cell-free DNA from blood plasma of cancer patients can be used to non-invasively interrogate somatic tumor alterations. Here we develop MSK-ACCESS (Memorial Sloan Kettering - Analysis of Circulating cfDNA to Examine Somatic Status), an NGS assay for detection of very low frequency somatic alterations in 129 genes. Analytical validation demonstrated 92% sensitivity in de-novo mutation calling down to 0.5% allele frequency and 99% for a priori mutation profiling. To evaluate the performance of MSK-ACCESS, we report results from 681 prospective blood samples that underwent clinical analysis to guide patient management. Somatic alterations are detected in 73% of the samples, 56% of which have clinically actionable alterations. The utilization of matched normal sequencing allows retention of somatic alterations while removing over 10,000 germline and clonal hematopoiesis variants. Our experience illustrates the importance of analyzing matched normal samples when interpreting cfDNA results and highlights the importance of cfDNA as a genomic profiling source for cancer patients.


Subject(s)
Biomarkers, Tumor/genetics , Circulating Tumor DNA/genetics , Genetic Markers/genetics , Neoplasms/genetics , DNA Mutational Analysis/methods , Gene Frequency/genetics , High-Throughput Nucleotide Sequencing , Humans , Mutation/genetics , Neoplasms/blood , Neoplasms/pathology
3.
JNCI Cancer Spectr ; 3(2): pkz012, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31360895

ABSTRACT

BACKGROUND: Genetic testing of cancer samples primarily focuses on protein-coding regions, despite most mutations arising in noncoding DNA. Noncoding mutations can be pathogenic if they disrupt gene regulation, but the benefits of assessing promoter mutations in driver genes by panel testing has not yet been established. This is especially the case in colorectal cancer, for which few putative driver variants at regulatory elements have been reported. METHODS: We designed a unique target capture sequencing panel of 39 colorectal cancer driver genes and their promoters, together with more than 35 megabases of regulatory elements focusing on gene promoters. Using this panel, we sequenced 95 colorectal cancer and matched normal samples at high depth, averaging 170× and 82× coverage, respectively. RESULTS: Our target capture sequencing design enabled improved coverage and variant detection across captured regions. We found cases with hereditary defects in mismatch and base excision repair due to deleterious germline coding variants, and we identified mutational spectra consistent with these repair deficiencies. Focusing on gene promoters and other regulatory regions, we found little evidence for base or region-specific recurrence of functional somatic mutations. Promoter elements, including TERT, harbored few mutations, with none showing strong functional evidence. Recurrent regulatory mutations were rare in our sequenced regions in colorectal cancer, though we highlight some candidate mutations for future functional studies. CONCLUSIONS: Our study supports recent findings that regulatory driver mutations are rare in many cancer types and suggests that the inclusion of promoter regions into cancer panel testing is currently likely to have limited clinical utility in colorectal cancer.

4.
J Clin Endocrinol Metab ; 104(10): 4889-4899, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31237614

ABSTRACT

CONTEXT: Most papillary microcarcinomas (PMCs) are indolent and subclinical. However, as many as 10% can present with clinically significant nodal metastases. OBJECTIVE AND DESIGN: Characterization of the genomic and transcriptomic landscape of PMCs presenting with or without clinically important lymph node metastases. SUBJECTS AND SAMPLES: Formalin-fixed paraffin-embedded PMC samples from 40 patients with lateral neck nodal metastases (pN1b) and 71 patients with PMC with documented absence of nodal disease (pN0). OUTCOME MEASURES: To interrogate DNA alterations in 410 genes commonly mutated in cancer and test for differential gene expression using a custom NanoString panel of 248 genes selected primarily based on their association with tumor size and nodal disease in the papillary thyroid cancer TCGA project. RESULTS: The genomic landscapes of PMC with or without pN1b were similar. Mutations in TERT promoter (3%) and TP53 (1%) were exclusive to N1b cases. Transcriptomic analysis revealed differential expression of 43 genes in PMCs with pN1b compared with pN0. A random forest machine learning-based molecular classifier developed to predict regional lymph node metastasis demonstrated a negative predictive value of 0.98 and a positive predictive value of 0.72 at a prevalence of 10% pN1b disease. CONCLUSIONS: The genomic landscape of tumors with pN1b and pN0 disease was similar, whereas 43 genes selected primarily by mining the TCGA RNAseq data were differentially expressed. This bioinformatics-driven approach to the development of a custom transcriptomic assay provides a basis for a molecular classifier for pN1b risk stratification in PMC.


Subject(s)
Genomics/methods , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Adult , Aged , Case-Control Studies , Cohort Studies , Comparative Genomic Hybridization , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Lymph Nodes/pathology , Lymphatic Metastasis , Middle Aged , Neck , Transcriptome
5.
Sci Rep ; 7(1): 708, 2017 04 06.
Article in English | MEDLINE | ID: mdl-28386116

ABSTRACT

Cancer is a multifactorial disease driven by a combination of genetic and environmental factors. Many cancer driver mutations have been characterised in protein-coding regions of the genome. However, mutations in noncoding regions associated with cancer have been less investigated. G-quadruplex (G4) nucleic acids are four-stranded secondary structures formed in guanine-rich sequences and prevalent in the regulatory regions. In this study, we used published whole cancer genome sequence data to find mutations in cancer patients that overlap potential RNA G4-forming sequences in 5' UTRs. Using RNAfold, we assessed the effect of these mutations on the thermodynamic stability of predicted RNA G4s in the context of full-length 5' UTRs. Of the 217 identified mutations, we found that 33 are predicted to destabilise and 21 predicted to stabilise potential RNA G4s. We experimentally validated the effect of destabilising mutations in the 5' UTRs of BCL2 and CXCL14 and one stabilising mutation in the 5' UTR of TAOK2. These mutations resulted in an increase or a decrease in translation of these mRNAs, respectively. These findings suggest that mutations that modulate the G4 stability in the noncoding regions could act as cancer driver mutations, which present an opportunity for early cancer diagnosis using individual sequencing information.


Subject(s)
G-Quadruplexes , Gene Expression Regulation , Mutation , Neoplasms/genetics , RNA/chemistry , RNA/genetics , Untranslated Regions , 5' Untranslated Regions , Cell Line, Tumor , Chemokines, CXC/genetics , Genes, Reporter , Genes, bcl-2 , Humans , Point Mutation , RNA Stability , Thermodynamics
6.
Nature ; 532(7598): 259-63, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-27075100

ABSTRACT

Promoters are DNA sequences that have an essential role in controlling gene expression. While recent whole cancer genome analyses have identified numerous hotspots of somatic point mutations within promoters, many have not yet been shown to perturb gene expression or drive cancer development. As such, positive selection alone may not adequately explain the frequency of promoter point mutations in cancer genomes. Here we show that increased mutation density at gene promoters can be linked to promoter activity and differential nucleotide excision repair (NER). By analysing 1,161 human cancer genomes across 14 cancer types, we find evidence for increased local density of somatic point mutations within the centres of DNase I-hypersensitive sites (DHSs) in gene promoters. Mutated DHSs were strongly associated with transcription initiation activity, in which active promoters but not enhancers of equal DNase I hypersensitivity were most mutated relative to their flanking regions. Notably, analysis of genome-wide maps of NER shows that NER is impaired within the DHS centre of active gene promoters, while XPC-deficient skin cancers do not show increased promoter mutation density, pinpointing differential NER as the underlying cause of these mutation hotspots. Consistent with this finding, we observe that melanomas with an ultraviolet-induced DNA damage mutation signature show greatest enrichment of promoter mutations, whereas cancers that are not highly dependent on NER, such as colon cancer, show no sign of such enrichment. Taken together, our analysis has uncovered the presence of a previously unknown mechanism linking transcription initiation and NER as a major contributor of somatic point mutation hotspots at active gene promoters in cancer genomes.


Subject(s)
DNA Repair/genetics , Genome, Human/genetics , Mutagenesis/genetics , Mutation Rate , Neoplasms/genetics , Promoter Regions, Genetic/genetics , Transcription Initiation, Genetic , Colonic Neoplasms/genetics , DNA Damage/genetics , DNA Repair/radiation effects , Deoxyribonuclease I/metabolism , Enhancer Elements, Genetic/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Lung Neoplasms/genetics , Melanoma/genetics , Point Mutation/genetics , Ultraviolet Rays
7.
Genome Biol ; 15(10): 485, 2014.
Article in English | MEDLINE | ID: mdl-25298093

ABSTRACT

Whole genome sequencing has enabled the identification of thousands of somatic mutations within non-coding genomic regions of individual cancer samples. However, identification of mutations that potentially alter gene regulation remains a major challenge. Here we present OncoCis, a new method that enables identification of potential cis-regulatory mutations using cell type-specific genome and epigenome-wide datasets along with matching gene expression data. We demonstrate that the use of cell type-specific information and gene expression can significantly reduce the number of candidate cis-regulatory mutations compared with existing tools designed for the annotation of cis-regulatory SNPs. The OncoCis webserver is freely accessible at https://powcs.med.unsw.edu.au/OncoCis/.


Subject(s)
Databases, Genetic , Gene Expression Regulation, Neoplastic , Molecular Sequence Annotation , Mutation , Neoplasms/genetics , Software , Computational Biology , DNA Mutational Analysis , Epigenomics , Humans , Promoter Regions, Genetic , Telomerase/chemistry , Telomerase/genetics
8.
Epigenetics ; 9(8): 1092-100, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24837038

ABSTRACT

In mouse models, loss of the candidate tumor suppressor gene Ubiquitin Specific Protease 44 (USP44) is associated with aneuploidy and cancer. USP44 is also transcriptionally silenced in human cancers. Here we investigated the molecular mechanism of USP44 silencing and whether this correlated with aneuploidy in colorectal adenomas. DNA methylation at the USP44 CpG island (CGI) promoter was measured using combined bisulfite restriction analysis (COBRA) in colorectal cancer (CRC) cell lines (n = 18), and with COBRA and bisulfite sequencing in colorectal adenomas (n = 89) and matched normal colonic mucosa (n = 51). The USP44 CGI was hypermethylated in all CRC cell lines, in most colorectal adenomas (79 of 89, 89%) but rarely in normal mucosa samples (3 of 51, 6%). USP44 expression was also compared between normal mucosa and paired hypermethylated adenomas in six patients using qRT-PCR. Hypermethylation of the USP44 CGI in adenomas was associated with a 1.8 to 5.5-fold reduction in expression compared with paired normal mucosa. Treatment of CRC cell lines with the DNA hypomethylating agent decitabine resulted in a 14 to 270-fold increase in USP44 expression. Whole genome SNP array data showed that gain or loss of individual chromosomes occurred in adenomas, but hypermethylation did not correlate with more aneuploidy. In summary, our data shows that USP44 is epigenetically inactivated in colorectal adenomas, but this alone is not sufficient to cause aneuploidy in colorectal neoplasia.


Subject(s)
Adenoma/genetics , Aneuploidy , Colorectal Neoplasms/genetics , Epigenesis, Genetic , Ubiquitin-Specific Proteases/genetics , Adenoma/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Antimetabolites, Antineoplastic/pharmacology , Azacitidine/analogs & derivatives , Azacitidine/pharmacology , Cell Line, Tumor , Colon/metabolism , Colorectal Neoplasms/metabolism , CpG Islands , Decitabine , Gene Expression , Genes, Tumor Suppressor , Humans , Intestinal Mucosa/metabolism , Male , Middle Aged , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Rectum/metabolism , Ubiquitin Thiolesterase , Young Adult
9.
Nucleic Acids Res ; 42(Database issue): D172-7, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24185696

ABSTRACT

The BloodChIP database (http://www.med.unsw.edu.au/CRCWeb.nsf/page/BloodChIP) supports exploration and visualization of combinatorial transcription factor (TF) binding at a particular locus in human CD34-positive and other normal and leukaemic cells or retrieval of target gene sets for user-defined combinations of TFs across one or more cell types. Increasing numbers of genome-wide TF binding profiles are being added to public repositories, and this trend is likely to continue. For the power of these data sets to be fully harnessed by experimental scientists, there is a need for these data to be placed in context and easily accessible for downstream applications. To this end, we have built a user-friendly database that has at its core the genome-wide binding profiles of seven key haematopoietic TFs in human stem/progenitor cells. These binding profiles are compared with binding profiles in normal differentiated and leukaemic cells. We have integrated these TF binding profiles with chromatin marks and expression data in normal and leukaemic cell fractions. All queries can be exported into external sites to construct TF-gene and protein-protein networks and to evaluate the association of genes with cellular processes and tissue expression.


Subject(s)
Blood Cells/metabolism , Databases, Genetic , Regulatory Elements, Transcriptional , Transcription Factors/metabolism , Binding Sites , Chromatin Immunoprecipitation , DNA/chemistry , DNA/metabolism , Gene Expression Profiling , Genome, Human , Hematopoietic Stem Cells/metabolism , Humans , Internet , Software , Transcription Factors/chemistry
10.
Blood ; 122(14): e12-22, 2013 Oct 03.
Article in English | MEDLINE | ID: mdl-23974199

ABSTRACT

Genome-wide combinatorial binding patterns for key transcription factors (TFs) have not been reported for primary human hematopoietic stem and progenitor cells (HSPCs), and have constrained analysis of the global architecture of molecular circuits controlling these cells. Here we provide high-resolution genome-wide binding maps for a heptad of key TFs (FLI1, ERG, GATA2, RUNX1, SCL, LYL1, and LMO2) in human CD34(+) HSPCs, together with quantitative RNA and microRNA expression profiles. We catalog binding of TFs at coding genes and microRNA promoters, and report that combinatorial binding of all 7 TFs is favored and associated with differential expression of genes and microRNA in HSPCs. We also uncover a previously unrecognized association between FLI1 and RUNX1 pairing in HSPCs, we establish a correlation between the density of histone modifications that mark active enhancers and the number of overlapping TFs at a peak, we demonstrate bivalent histone marks at promoters of heptad target genes in CD34(+) cells that are poised for later expression, and we identify complex relationships between specific microRNAs and coding genes regulated by the heptad. Taken together, these data reveal the power of integrating multifactor sequencing of chromatin immunoprecipitates with coding and noncoding gene expression to identify regulatory circuits controlling cell identity.


Subject(s)
Genome-Wide Association Study , Hematopoiesis/genetics , Hematopoietic Stem Cells/physiology , Transcription Factors/genetics , Cell Differentiation/genetics , Chromatin Immunoprecipitation , Cluster Analysis , Flow Cytometry , Hematopoietic Stem Cells/cytology , Humans , RNA, Untranslated , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...